Chapter 12/3 Three-Dimensional Figures

Section 12-1:  Three-Dimensional Figures

SOL:  G.12
The student will make a model of a three-dimensional figure from a two-dimensional drawing and make a two-dimensional representation of a three-dimensional object. Models and representations will include scale drawings, perspective drawings, blueprints, or computer simulations.

Objective:


Use orthogonal drawings of three-dimensional figures to make models


Identify and use three-dimensional figures

Vocabulary:



Orthogonal Drawing – Two-dimensional view from top, left, front and right sides


Corner View – View of a figure from a corner


Perspective View – same as a corner view


Polyhedron – A solid with all flat surfaces that enclose a single region of space


Face – Flat surface of a polyhedron


Edges – Line segments where two faces intersect (edges intersect at a vertex)


Bases – Two parallel congruent faces


Prism – Polyhedron with two bases


Regular Prism – Prism with bases that are regular polygons


Pyramid – Polyhedron with all faces (except for one base) intersecting at one vertex


Regular Polyhedron – All faces are regular congruent polygons and all edges congruent


Platonic Solids – The five types of regular polyhedra (named after Plato)


Cylinder – Solid with congruent circular bases in a pair of parallel planes


Cone – Solid with a circular base and a vertex (where all “other sides” meet)


Sphere – Set of points in space that are a given distance from a given point (center)

Cross Section – Intersection of a plane and a solid

Reflection Symmetry – Symmetry with respect to different planes (instead of lines)


[image: image30.png]




[image: image2.emf]Other 3d Figures

Pyramid (Square) Cylinder

h

r

h

B

l

h

r

l

Cone Sphere

r

Pyramid –A 

polyhedron with all 

faces (except the 

base) intersecting at 

one vertex.  Named 

for their bases (which 

can be any polygon).  

Cylinder –A solid 

with circular 

congruent bases in 

two parallel planes 

(a can). 

Cone –A solid 

with circular 

base and a 

vertex. 

Sphere –All points 

equal distant from a 

center point in 3-

space

l –

slant height

l –

slant height


Concept Summary:


A solid can be determined from its orthogonal drawing

Solids can be classified by bases, faces, edges, and vertices

Homework:  none
Section 12-2:  Nets and Surface Areas

SOL:  G.12
The student will make a model of a three-dimensional figure from a two-dimensional drawing and make a two-dimensional representation of a three-dimensional object. Models and representations will include scale drawings, perspective drawings, blueprints, or computer simulations.

Objective:


Draw two-dimensional models for three-dimensional figures

Find surface area

Vocabulary:  

Net – Three-dimensional object cut along its edges and laid flat


Surface Area – Sum of the areas of each face of the solid
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Concept Summary:


Every three-dimensional solid can be represented by one or more two-dimensional nets.


The area of a net of a solid is the same as the surface area of the solid
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Example 1:  Which of the following represents the net of a cone? 
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Example 2:  Which of the following represents the net of a cylinder?
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Example 3:  Which of the following represents the net of a triangular prism?
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Homework:
none
Section 12-7/13.3:  Surface Area and Volumes of Spheres
SOL:  G.13
The student will use formulas for surface area and volume of three-dimensional objects to solve practical problems. Calculators will be used to find decimal approximations for results.

           G.14
The student will

b)
determine how changes in one dimension of an object affect area and/or volume of the object.

Objective:


Recognize and define basic properties of spheres


Find surface areas of spheres


Find volumes of spheres


Solve problems involving volumes of spheres

Vocabulary:  


Great circle – intersection of a plane and a sphere that contains the center of the sphere


Hemisphere – a congruent half of a sphere defined by a great circle

Key Concepts:


Surface Area of a Sphere:  SA = 4πr²

Volume of a Sphere:  If a sphere has a volume of V cubic units and a radius of r units, then V = 4/3πr3 

Concept Summary:
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Example 1:  Find the surface area and the volume of the following sphere
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Example 2:  Find the surface area and the volume of the following sphere
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Example 3:  Find the surface area and the volume of the following sphere
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Homework:  pg 704-705;  9-18

Section 12-4/13.1:  Surface Areas and Volumes of Cylinders

SOL:  G.13
The student will use formulas for surface area and volume of three-dimensional objects to solve practical problems. Calculators will be used to find decimal approximations for results.

Objective:


Find lateral areas of cylinders


Find surface areas of cylinders

Find volume of cylinders
Vocabulary:  


Axis of a Cylinder – the segment with endpoints that are centers of circular bases

Right Cylinder – A cylinder where the axis is also an altitude


Oblique Cylinder – a non-right cylinder
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Concept Summary:


Lateral surface area of a cylinder is 2( times the product of the radius of a base of the cylinder and the height of the cylinder


Surface area of a cylinder is the lateral surface area plus the area of both circular bases


The volume of cylinders is given by the formula V = Bh

Example 1: [image: image20.png]


Find the surface area and the volume of the cylinder
Example 2: Find the surface area and the volume of the cylinder[image: image21.png]



Homework:
pg 692; 7-16
Section 12-3/13-1:  Surface Areas and Volumes of Prisms

SOL:  G.13
The student will use formulas for surface area and volume of three-dimensional objects to solve practical problems. Calculators will be used to find decimal approximations for results.

           G.14
The student will  … determine how changes in one dimension of an object affect area and/or volume of the object.

Objective:


Find lateral areas of prisms


Find surface areas of prisms


Find the volume of prisms

Vocabulary:  

Bases – congruent faces in parallel planes

Lateral faces – rectangular faces that are not bases (not all parallel)


Lateral edges – intersection of lateral faces


Right Prisms – a prism with lateral edges that are also altitudes


Oblique Prisms – a non-right prism


Lateral Area – is the sum of the areas of the lateral faces
Key Concepts:

Prism is named for its base (see examples below)

Surface area of a Prism:  SA = lateral area (the area of the sides – rectangles usually!) + base area (the area of the two bases added together – formulas from chapter 11)

Volume of a Prism:  If a prism has a volume of V cubic units, a height of h units, and each base has an area of B square units, then V = Bh
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Example 1: Find SA and V of the cube to the right

Example 2:  Find the SA and V of the rectangular prism to the right [image: image23.png]



Example 3:  Find the SA and V of the isosceles triangular prism to the right [image: image24.png]



Concept Summary:


Lateral faces of a prism are the faces that are not bases of the prism


Lateral surface area of a right prism is the perimeter of the base of the prism times the height of the prism


The volumes of prisms and cylinders are given by the formula V = Bh

Homework:
pg 692; 7-16

Section 12-5/13-2:  Surface Areas and Volumes of Pyramids

SOL:  G.13
The student will use formulas for surface area and volume of three-dimensional objects to solve practical problems. Calculators will be used to find decimal approximations for results.

           G.14
The student will

b)
determine how changes in one dimension of an object affect area and/or volume of the object.

Objective:


Find lateral areas of regular pyramids


Find surface areas of regular pyramids


Find the volume of pyramids

Vocabulary:  

Regular Pyramid – a pyramid with a regular polygon for a base and a vertex perpendicular to the base


Slant Height – the height of each lateral face of the pyramid
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Concept Summary:


The slant height l of a regular pyramid is the length of an altitude of a lateral face


The lateral area of a pyramid is ½ Pl, with l is the slant height of the pyramid and P is the perimeter of the base of the pyramid.


The volume of a pyramid is given by the formula V = 1/3 Bh.

Example 1:  Find the surface area and the volume of the square pyramid below
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Example 2:  Find the surface area and the volume of the pyramid to the right 
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Example 3:  Find the surface area and the volume of the pyramid to the right 
[image: image27.png]



Homework:
pg 699-701; 9, 11-13, 15-16, 33
Section 12-6/13-2:  Surface Areas and Volumes of Cones

SOL:  G.13
The student will use formulas for surface area and volume of three-dimensional objects to solve practical problems. Calculators will be used to find decimal approximations for results.

           G.14
The student will

b)
determine how changes in one dimension of an object affect area and/or volume of the object.

Objective:


Find lateral areas of cones


Find surface areas of cones


Find the volume of cones

Vocabulary:  

Circular Cone – tepee shaped cone


Right Cone – a cone with an axis that is also an altitude


Oblique Cone – any other cone (non-right cone)
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Concept Summary:


A cone is a solid with a circular base and single vertex


The lateral area of a right cone is (rl, where l is the slant height of the cone and r is the radius of the circular base


The volume of a cone is given by the formula V = 1/3πr2h

Example 1:  Find the surface area and the volume of the cone to the right[image: image28.png]



Example 2:  Find the surface area and the volume of the cone to the right [image: image29.png]



Homework:  pg 699-701; 9, 11-13, 15-16, 33
Section 13-4:  Congruent and Similar Solids

SOL:  G.13
The student will use formulas for surface area and volume of three-dimensional objects to solve practical problems. Calculators will be used to find decimal approximations for results.

           G.14
The student will … determine how changes in one dimension of an object affect area and/or volume of the object.

Objective:


Identify congruent or similar solids


State the properties of similar solids

Vocabulary:  


Similar solids – solids that have exactly the same shape but not necessarily the same size.


Congruent solids – are exactly the same shape and exactly the same size

Key Concept:   Congruent Solids:  Two solids are congruent if:

· The corresponding angles are congruent

· The corresponding edges are congruent

· The corresponding faces are congruent, and

· The volumes are equal
Theorems:
Theorem 13.1:  If two solids are similar with a scale factor of a:b, then the surface areas have a ratio of a2:b2, and the volumes have a ratio of a3:b3
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Concept Summary:


Similar solids have the same shape, but not necessarily the same size


Congruent solids are similar solids with a scale factor of 1

Homework:
pg 711;  11-16, 18-23

Section 13-5:  Coordinates in Space

SOL:  G.13
The student will use formulas for surface area and volume of three-dimensional objects to solve practical problems. Calculators will be used to find decimal approximations for results.

           G.14
The student will

b)
determine how changes in one dimension of an object affect area and/or volume of the object.

Objective:

Graph solids in space

Use the distance and midpoint formulas for points in space

Vocabulary:  

Ordered triple – point in space (x, y, z)

Key Concepts:
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Concept Summary:


The distance formula in space is d = √(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2 

Given A (x1, y1, z1) and B(x2, y2, z2), the midpoint of AB is given above

Homework:
pg 717- 719: 16-19, 38
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